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Cool 3D Structures 

How are we going  

to actually assemble  

these??? 
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Introduction –  

Steady Demand for Finer Pitch Interconnects 

 BGA 

• Ball-Grid arrays: 400-100u centers 

 “Fine pitch” Flip Chip  

• C-4 - like processes: approaching  sub-100u centers 

 3DIC chip stacking 

• Paradigm shift to TSVs, copper posts, SnAg caps: as low as 10u 

centers!  True Microbumps as small as 3 microns. 
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2048 X 2048 IRFPA 

4 Megapixel 3D Hybrid 

Some Clues From The Infrared Focal Plane Industry 
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Introduction –  

3D Bonding is a Whole New Ballgame 

 Micro-fine pitch and new bonding metallurgy require 

tighter restrictions on process control: 

• Bond alignment accuracy in X, Y, Theta, parallelism. 

• Maintaining alignment during initial (and subsequent) reflow. 

• Squeeze-out control. 

• Thermal expansion/flexibility/reliability issues. 

• Surface preparation to control oxides and contamination. 

 

 

~20µ 
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Why not Prep. with Flux, Acid, or RIE? 

 Photoresist residue inhibits fluxes and acids - Non-

uniformity. 

 Narrow gaps – Flux cannot be removed. – Reliability. 

 Acid dips difficult to control. Microbumps etch away in 

seconds. Electrolytic etch enhancement.  Non-uniformity. 

 Acid dips require rinse before bonding – re-oxidation is 

time-sensitive. 

 Oxygen ashing – OK for organics, but grows hard Oxide! 

 RIE is slow, expensive, and potentially damaging to 

sensitive chips - Re-oxidation is time-sensitive. 
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We Propose A “Radical” New Approach To Surface Prep: 

Atmospheric Downstream Plasma Treatment 

 Advantages: 
 

• Simple apparatus – no vacuum chamber. 

• Plasma is contained entirely within the process head, never contacting the 

chip/wafer. 

• Downstream radical chemistry only.  

• No exposure to: arc discharges, ions, bombardment, re-deposition. 

• CMOS safe. 

• Fast process - completes in seconds – continuous thruput capable. 

• Non-toxic, dry process.  OSHA- and EPA-friendly. 

• Very effective at removing organic contamination films and loose particles. 

• Reduces native oxides on metallic surfaces. 

• Can add surface passivation against re-oxidation - removal not required. 
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Atmospheric Downstream Plasma Apparatus 

 Chip/wafer is scanned under 

compact process head. 

 25mm wide process zone. 

 Typical scan rate: 1-5 mm/sec. 

 Process runs in room ambient. 

 Programmable control of 

plasma and scan parameters. 

 Vacuum chuck handles small 

chips to 8” wafers. 

 Typical power to internal 

plasma source: 60-100 Watts. 

 Made in U.S.A. 
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Surface Preparation Metrics 

How Is The Process Monitored? 

 Surface films only a few monolayers thick can 

compromise bonds, but are difficult to characterize. 

  

• XPS. 

• Empirical bonding tests. 

• Laser Ellipsometry provides fast, quantitative surface 

film data even at sub-monolayer coverages.   
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Laser Ellipsometry As A Surface Film Metric 

 Polarized laser beam reflects from sample surface 

 Change in polarization (Δ) depends on index and 

thickness of surface film (i.e. metal oxide) 

 One degree change in Δ corresponds to                     

~2.5 monolayers of surface film (index dependant). 

HeNe laser 
Detector/analyzer 

Polarizer Polarizer 

Δ 

Oxide Thickness (Å) 
0 50 

125 

130 Clean Metal surface 

Native Oxide 
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Examples Of Ellipsometer Response 
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Process-Induced 

Ellipsometer Response: 

•Copper  

•SnAg  

•Nickel  

•Indium 
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Copper Response To  

Atmospheric Plasma Treatment 
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Similar response from SnAg, Ni, and In 
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Passivation Stability 
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Copper Passivation Effectiveness  

Vs Temperature (in air) 

(< 1 ML in 5 minutes) 

(~6 ML in 5 minutes) 

(Passivation ineffective @ 150C–  

  More work required) 

Cu 
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Passivation Is More Effective On SnAg, Ni, And In 
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Physical Results 
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Graphic Demonstration: 

Removing Heavy Copper Oxide at R.T. 

4 Cu/Si coupons out of the box 

3 coupons hotplate oxidized - 150C, 12 minutes 

(Approximately 400 Angstroms) 
Control 

Control 

Atmospheric Plasma reduces Cu Oxide at R.T. 

3 scans returns Cu to native state. 
No  

scan 

1 

scan 

HP 

Ox. 

HP 

Ox. 
HP 

Ox. 

3 

scans 
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Bonding to Treated Copper 

•Indium to Copper 

•Both surfaces treated. 

•Room temperature compression. 

•No reflow. 

•Shear test shows In bonded to Cu. 
Treated Copper 

Bonded Indium 

•Copper to Copper 

•Want to try. 

•Need samples. 
? ? 

Treated Copper 

Bonded SnAg •SnAg to Copper 

•Both surfaces treated. 

•185C  compression in air. 

•NO reflow 

•Shear test shows SnAg bonded to Cu. 
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Excellent Bonding to Treated Nickel 

•Indium to Nickel 

•Both surfaces treated. 

•Room temperature compression. 

•No reflow. 

•Pull test showed Indium transferred      

to blanket Nickel. (no photo available) 

•Tensile rupture of Indium within 

bump 

Blanket Nickel 

Indium transferred  

to Nickel 

•SnAg to Nickel 

•Both surfaces treated. 

•180C compression. 

•No reflow. 

•Pull test showed SnAg transferred      

to blanket Nickel. (no photo available) 

•Tensile rupture of SnAg within bump 

Blanket Nickel 

SnAg transferred  

to Nickel 

Benefit of Ni over Cu:  No fragile intermetallics! 
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Special Case: 

Gold 
Thermocompression at 200C 
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Bonding Gold Pad to Gold Pad 

•Gold pad to Gold pad 

•No surface treatment. 

•Compression @ 200 C 

•No reflow. 

•Pull test showed Gold pad 

compression but low adhesion 
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Bonding Gold Pad to Gold Pad 

•Gold pad to Gold pad 

•No surface treatment. 

•Compression @ 200 C 

•No reflow. 

•Pull test showed Gold pad 

compression but low adhesion 

•Gold pad to Gold pad 

•Both surfaces treated. 

•Compression @ 200 C 

•No reflow. 

•Pull test shows ideal tensile rupture 

of Gold 

•In many places, entire pad with 

underlying Silicon was pulled out. 
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Gold Response To  

Atmospheric Plasma Treatment 
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Why Is Reducing Chemistry  

Having An Effect On Gold? 

 Small 1 degree change in Delta corresponds to 

approximately 2.5 - 3 monolayers of…..What? 

• Au2O3? 

• Organic residue from previous photoresist liftoff?, dicing protect? 

• Perhaps a monolayer or two of adsorbed H2O, OH, or general 

atmosphere organics? 

• A trace of Silicone from Gelpak container? 

• Need before/after XPS data. 

• Whatever it is, the Atmospheric 

Surface Treatment does a very 

nice job of cleaning and activating 

the Gold surface for bonding. 
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Special Case: 

Indium 
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Bonding With Indium 
•Indium bump to Indium bump (70µ bumps) 

•No surface treatment. 

•Room temperature compression 

•1 gram per bump. 

•No reflow. 

•Pull test shows Indium compression 

but zero adhesion 

•Indium bump to Indium bump (70µ bumps) 

•Both surfaces treated. 

•Room temperature compression. 

•1 gram per bump. 

•No reflow. 

•Pull test shows ideal tensile rupture of 

Indium. 

•Indium bump to Indium bump (IRFPA 20µ c-c) 

•Both surfaces treated. 

•Bonded at room temp, no reflow. 

• 0.1 gram per bump. 

•Pull-apart shows ideal tensile rupture in 

indium bulk. 
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Should Indium Be Considered  

For 3D Interconnect? 

 Mil-Spec. reliability in Infrared Focal Planes: 

• Decades of application experience. 

• Mega-bump 3D structures in routine production. 

• Ideal for high-strain heterostructures. 

 Instant bonding at room temperature: 

• No reflow required. 

 But pure Indium melts at 156C – not good for subsequent 

reflow assembly. 
• Alloys of Indium provide broad range of melt temp: 

• Beyond 260C while still R.T. bondable. 

 Could enable sequential 3D stacking without reflow 
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Conclusions 

 Atmospheric Downstream Plasma provides rapid 

effective surface preparation for an important 

variety of metals. 

 Addresses both oxidation and contamination 

issues in 3D assembly. 

 Enables new paradigms in 3D assembly: 

• Wider range of acceptable contact metals, 

• Potential for non-reflow assembly, 

• Possibly even room temperature! 

 



-33- 
Schulte, Cooper, Phillips, Shinde May 29-June 1, 2012 

Future Work 

More XPS analysis to verify theories about 

the last few monolayers. 

Optimize passivation for Copper. 

Enable additional metals with higher ΔHf 

capability. 

Explore the use of low-modulus alloys for 

room temperature 3D assembly. (Partner?) 
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